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Abstract. An interesting topology with easy integration capability (from mask designing aspect) for opti-
cal filters using Fibonacci-class (FC(J,n)) ring-resonators is introduced. For some special cases, analytical

transfer function (Transmission Coefficient H
(n)
m ) is obtained and corresponding simulated result is illus-

trated. In this work, optical multi-band filter design and analysis using Fibonacci-class ring resonators is
considered. With suitable selection of system parameters and FC(J, n), we report multi-band character-
istic for this structure. Also, dominant factors effects on multi-band operation are shown. We show that
the coupling coefficients, effectively affects (e.g. generation or annihilation of additional band) the multi-
band properties obtained in proposed structure. Also, the bandwidth and position of additional band
can be controlled using Fibonacci-class basic elements (A, B) parameters such as rings diameters. Also,
proposed system is easier than general multistage rings coupled to main waveguide from implementation
point of view.

PACS. 41.20.Jb Electromagnetic wave propagation; radiowave propagation – 42.79.Gn Optical waveguides
and couplers – 42.82.Gw Other integrated-optical elements and systems – 42.25.Bs Wave propagation,
transmission and absorption

1 Introduction

Transport phenomena of light waves in three, two, and
one-dimensional complex structures have attracted a lot
of attention in the last years. Complex photonic structures
are artificial materials in which the index of refraction
has a particular variation on length scales comparable to
the wavelength of light. A periodic variation of the refrac-
tive index gives rise to a photonic crystal structure. At
high enough refractive index contrast these periodic sys-
tems can exhibit a photonic band gap, in analogy with
the band gap for electron in a semiconductor. In this
direction, there are many published papers and approx-
imately main part of these properties was reported [1,2].
Also, optical integrated circuit design and implementation
is very interesting subject from optical engineering pur-
poses point of view. One of basic and critical properties
for optical integrated circuits (OIC) is integration capa-
bility with usual planar technology for semiconductors.
Because of inherent potentials in this domain, propos-
ing monolithic special blocks such as signal conditioners
is considerable. From all devices for signal conditioners,
optical filters has basic role and is important. For ex-
ample, with engineering dense wavelength division mul-
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tiplexing systems (DWDM) and with increasing the num-
ber of channels in practice, we need very narrowband fil-
ters for separating single or multi channels simultaneously.
For realization of these filters there are many alternatives
such as fiber Bragg Gratings, which is discussed more in
the reported papers and textbooks. Also, quasi-periodic
structures are one of interesting cases for realization of
narrowband optical filters. Quasi-periodic structures can
be implemented by two methods. One of these methods
is multilayer structure, which need epitaxial methods for
implementation. The optical properties of Fibonacci based
multilayer structures were studied in [3–6]. The second one
is ring-resonators, which is presented here. So, here, ring
resonator as a basic element for optical filters is consid-
ered. In this work, we will study the optical properties of
Fibonacci-class ring resonators as optical filters. Also, op-
tical ring resonators were studied more in [7–10]. From our
point of view, Fibonacci-based ring-resonators arrange-
ment needs more study and calculations. So, in this paper,
we will concentrate on optical properties of light propa-
gation through Fibonacci-class ring-resonators. Specially,
in this work, we present a design for optical filters with
minimum masks for manufacturing. In this idea, the only
difference between rings is the radius of rings, which is
simple for manufacturing. The organization of this paper
is as follows.
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Fig. 1. Simple schematics of ring resonators coupled to optical waveguide (A and B corresponding to Fibonacci basic units).

In Section 2, mathematical modeling for investigat-
ing the optical behavior of proposal is presented. For this
purpose, first we introduce the basic transfer function for
Fibonacci elements and ring resonators coupled to main
waveguide and then generalize for arbitrary arrangement
of ring resonators according to Fibonacci algorithm. Re-
sults and discussion for some special cases are presented in
Section 3. Finally, the paper ends with a short conclusion.

2 Mathematical modeling of Fibonacci-class
ring-resonators

Figure 1 shows the simple schematics of ring res-
onators coupled to optical waveguides with ring diameter
ri, (i = A, B), the coupling coefficient Ki, the index of re-
fraction ni, the incident field Ei and the outgoing field Et

for both elements of our considering Fibonacci-class. Also,
E1 and E2 are output and input fields inside rings near
the coupling region.

For this structure Li = 2πri, γi, kni and αi, are the
ring length, the coupler attenuation coefficient, the wave
vector and the ring attenuation coefficient respectively for
i = A and B.

In this part, we introduce the Fibonacci-class
FC(J, n). In Fibonacci sequence, we need two basic ele-
ments named A and B. Here, A and B are ring resonators
and demonstrated in Figure 1. The FC(J, n) shown the
Fibonacci-class sequences with index J as sequence char-
acter and n as pointer of generalized model. The FC(J, n)
sequence is a class of quasi-periodic lattice generated by
substitution rules as

B → Bn−1A, A → Bn−1AB, (1)

where n is a positive integer number and generalized
Fibonacci-class model factor. So, using equation (1), with
starting from B, we have

S1 = B,

S2 = Bn−1A,

S3 = (Bn−1A)nB, (2)

which follows the following recursion relation as

SJ = SJ−1
nSJ−2, for J ≥ 3. (3)

If equation (3) expanded for J = 3, 4, 5, we obtain the
following relations

S3 = S2
nS1 = (Bn−1A)nB

= (BB.....BA)(BB.....BA)..............(BB.....BA)B′

S4 = S3
nS2 = [(Bn−1A)nB]n(Bn−1A)′

S5 = S4
2S3 = [[(Bn−1A)nB]n(Bn−1A)]n(Bn−1A)nB.

(4)

So, after introducing Fibonacci sequence in terms of basic
elements, we calculate the basic elements transfer func-
tions. According to mode coupling theory and assuming
single mode for main waveguide and rings, the input-
output relation is given as

Et =
√

1 − γi · [Ei ·
√

1 − Ki + j
√

Ki · E2],

E1 =
√

1 − γi · [E2 ·
√

1 − Ki + j
√

Ki · Ein], (5)

where i = A, B, γi and Ki are intensity insertion loss and
the coupling factors and normalized to related overlap in-
tegrals or effective areas (determined by mode functions)
and values changes from zero to one in our calculation. In
fact guided mode shape will determine insertion loss and
coupling factor in basic elements. The relation between
E1 and E2 can be obtained based on light transmission
theory in homogeneous medium as

E2 = E1 · e
−αi

2 .Li · e−jkni
.Li , (6)

where kni = 2π
λ ni is the wave vector and ni is the rings

index of refractions in Figure 1. Also, αi is ring loss
(roundtrip loss), which includes propagation loss, losses
from transitions in the curvature, and bending losses. Us-
ing equations (5–6), we obtain the following transfer func-
tion for Fibonacci basic elements as

Et

Ein

∣∣
∣
i
=

√
1 − γi ·

( √
1 − Ki −

√
1 − γi · e

−αi
2 Li · e−jkni

Li

1 − √
(1 − Ki) · (1 − γi) · e

−αi
2 Li · e−jkni

Li

)

,

(7)

where, HA and HB are defined as

HA,B =
Et

Ein

∣
∣
∣
i=A,B

.
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Fig. 2. Our Fibonacci-based proposal as optical filter for
FC(J = 3, n).

Now, our proposal for optical filtering block, for example
for J = 3, is shown in Figure 2.

Now, using equations (3–4), Figure 2 and perform-
ing some mathematical calculation and manipulations on
them, we obtain the following relation for system transfer
function (transmission coefficient H

(n)
m ) as

H
(n)
3 =

Et

Ei

∣∣
∣
J=3,n

= e−
α0
2 ξe−jKn0ξH

n(n−1)+1
B Hn

A, (8)

where
ξ = 2nra + 2[n(n− 1) + 1]rb + (n2 + 2)L. Also, n0 and α0

are the index of refraction and propagation loss in main
waveguide (Kn0 is wave vector in main waveguide).
Also, in the above equation, ra, rb and L are the ring A,
B radiuses respectively and distance between rings such
that, we have,

L0 = rb + L,

Lb1 = rb + L + rb,

.

.

.

Lbn−1 = rb + L + ra. (9)

Also, using similar calculations the following relations is
obtained for J = 4 as

H
(n)
4 =

Et

Ei

∣
∣∣
∣
∣
J=4,n

=e−
α0
2 η ·e−jKn0η ·H(n2+1)(n−1)+n

B ·Hn2+1
A ,

(10)
where

η = 2(n2 + 1)ra + 2[n3 − n2 + 2n− 1]rb + (n3 + 2n + 1)L.

Using similar methods, we can propose the following
transfer function for general case as

H(n)
m =

Et

Ei

∣
∣∣
∣
∣
J=m,n

=e−
α0
2 χm ·e−jKn0χm ·Hfm

(1)(n)
B ·Hf(2)

m (n)
A ,

(11)
where χm = g(ra, rb, L, n) and fm

(1,2)(n) are functions
of integer number n. Also, fm

(1)(n) and fm
(2)(n) are the

number of ring B and A respectively in proposed struc-
ture. As an example, in the following table, we give the
transfer functions for special cases.

Now, using many different suitable combinations for
Ki, γi, αi, kni , J and n, we can obtain excellent per-
formances for optical filters, which are presented in the
next section.

Table 1. Transfer coefficients for some special cases.

χm fm
(1)(n) fm

(2)(n)

H
(1)
7 16ra + 10rb + 14L 5 8

H
(1)
6 10ra + 6rb + 8L 3 5

H
(1)
5 6ra + 4rb + 6L 2 3

H
(1)
4 4ra + 2rb + 4L 1 2

H
(1)
3 2ra + 2rb + 3L 1 1

H
(2)
3 4ra + 6rb + 6L 3 2

H
(2)
4 10ra + 14rb + 13L 7 5

H
(3)
3 6ra + 14rb + 11L 7 3

H
(4)
3 8ra + 26rb + 18L 13 4

H
(3)
4 20ra + 46rb + 34L 23 10

H
(2)
5 24ra + 34rb + 31L 17 12

3 Result and discussion

In this section, we will present some suitable performance
of our proposed idea in Section 2. For this purpose, we try
to simulate and illustrate typical curves for demonstrating
our ideas. Our simulation in this paper is divided into
4 groups as follows.

1. Simulation with general basic elements parameters;
2. Finding special parameters for multi-band operation

and investigating the effect of Fibonacci-class factors J
on transmission coefficient with constant n(n = 1);

3. Investigating the effect of generalization factor n on
multi-band operation;

4. System parameters effects on transmission coefficient.

So, in the following, we present the simulated result for
demonstrating the above-mentioned cases.

Case 1. In this case, we demonstrate the transmission co-
efficient for system parameters without special conditions
on them. In this part, we simulate our proposed optical
filter transfer function for Fibonacci-class with n = 1 and
J = 3–7. Result for this case is shown in Figure 3 for
given parameters. With increasing class factor (J), the
bandwidth for stop band is increased and the amplitude
also is decreased. Increasing the stop band is related to
increasing the degree of freedom (Tab. 1), and according
to control system engineering, it is acceptable. According
to linear system theory, increasing the system degree of
freedom or poles will decrease the system pass band and
increase the stop band. Also, the decreasing of transmis-
sion coefficient amplitude is related to light coupling to
the large number of rings. Increasing J will increase non-
linearly the number of rings coupled to main waveguide.
So, the light coupling to rings will increase nonlinearly and
finally, the transmitted light is decreased.

Case 2. In this part, we simulate the transmission coeffi-
cient for special system parameters in which one another
additional band can be appeared. Multi-band operation is
one of the necessary blocks for modern signal processing in
optical communication. So, design and analysis of optical



140 The European Physical Journal B

Fig. 3. Transmission coefficients for different J and n = 1 vs.
phase (0 − 2π for 1.55 µm) (λ = 1.55 µm, L = 20 µm, n0 =
1.5, αa = αb = α0 = 5 × 10−5(µm)−1, na = 3, nb = 3, ra =
100 µm, rb = 130 µm, γa = γb = 0.1, ka = 0.1, kb = 0.85).

multi-band filters in this area is important. In this case,
using Fibonacci-class ring resonator, we show this oper-
ation. Our simulated result is given in Figure 4a. With
increasing one of the basic elements (B) diameters, the
additional band is moved from higher frequencies to lower
frequencies. Also, the general behavior for increasing J ,
which is shown in Figure 3 for n = 1, is seen in this case.
Beside, with increasing the class factor (J), the bandwidth
of additional band is increased. It is related to the in-
creasing of power in transfer function or to the increasing
of system poles. In this case, we demonstrate the phase
of transmission coefficient. It is clear that in pass bands,
there are linear relationships and it is excellent for signal
processing purposes. Result is given in Figure 4b.

Case 3. In this case, we present the simulated results
for demonstrating the effect of n on transmission coef-
ficient. First, we consider the effect of n on J = 3. In
Figure 5, the transmission coefficient for given parame-
ters with different n and J = 3 is illustrated. With in-
creasing n, the bandwidth considerably increased and the
amplitude is decreased. The increasing and decreasing of
the bandwidth and the amplitude in this case is more than
Figure 4a. This is related to nonlinear relation of n and
transmission coefficient (H(n)

m ). The decreasing of ampli-
tude, generally, can be compensated using optical ampli-
fiers in receivers. So, increasing or decreasing of n is an
excellent method for bandwidth control. Also, phase re-
lation for transmission coefficient given in Figure 5a is
illustrated in Figure 5b. As previous case, there is linear
relationship in pass bands.

The transmission coefficient and phase relation for
J = 4 and n = 1−3 are demonstrated in Figures 5c, d. As
it is shown, increasing n has critical effect for J = 4 ver-
sus J = 3. As we say before, it is related to the nonlinear

(a)

(b)

Fig. 4. (a) Transmission coefficients for multi-band opera-
tion (for J = 3 − 7 and n = 1) vs. phase (0 − 2π for 1.55 µm)
(λ = 1.55 µm, L = 20 µm, n0 = 1.5, αa = αb = α0 =
5 × 10−5(µm)−1, na = 3, nb = 3, ra = 100 µm, rb = 180 µm,
γa = γb = 0.1, ka = 0.09, kb = 0.099). (b) Phase of trans-
mission coefficients for multi-band operation (for J = 3 − 7
and n = 1) vs. phase (0 − 2π for 1.55 µm) (λ = 1.55 µm,
L = 20 µm, n0 = 1.5, αa = αb = α0 = 5 × 10−5(µm)−1, na =
3, nb = 3, ra = 100 µm, rb = 180 µm, γa = γb = 0.1, ka =
0.09, kb = 0.099).

relation, which in case J = 4 is grater than J = 3. Also,
the bandwidth increasing is more than previous case.

Case 4. In this case, we will investigate the system pa-
rameters effects on transmission coefficient. Also, we will
concentrate on J = 3 and J = 4 with different n. First,
we show the effect of the index of refraction in rings on
transmission function. Figure 6a shows the effect of basic
ring-A index of refraction variation on transfer function.
It is shown that with decreasing the index of refraction,
the additional band is moved to low frequencies approx-
imately without broadening and amplitude changing. So,
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(a) (b)

(c) (d)

Fig. 5. (a) Transmission coefficients for multi-band operation (for J = 3 and n = 1 − 3) vs. phase (0 − 2π for 1.55 µm)
(λ = 1.55 µm, L = 20 µm, n0 = 1.5, αa = αb = α0 = 5 × 10−5(µm)−1, na = 3, nb = 3, ra = 100 µm, rb = 180 µm,
γa = γb = 0.1, ka = 0.09, kb = 0.099). (b) Phase of transmission coefficients for multi-band operation (for J = 3 and n = 1 − 3)
vs. phase (0−2π for 1.55 µm) (λ = 1.55 µm, L = 20 µm, n0 = 1.5, αa = αb = α0 = 5×10−5(µm)−1, na = 3, nb = 3, ra = 100 µm,
rb = 180 µm, γa = γb = 0.1, ka = 0.09, kb = 0.099). (c) Transmission coefficients for multi-band operation (for J = 3, and
n = 1 − 3) vs. phase (0 − 2π for 1.55 µm) (λ = 1.55 µm, L = 20 µm, n0 = 1.5, αa = αb = α0 = 5 × 10−5(µm)−1, na =
3, nb = 3, ra = 100 µm, rb = 180 µm,γa = γb = 0.1, ka = 0.09, kb = 0.099). (d) Phase of transmission coefficients for multi-band
operation (for J = 3 and n = 1 − 3) vs. phase (0 − 2π for 1.55 µm) λ = 1.55 µm, L = 20 µm, n0 = 1.5, αa = αb = α0 =
5 × 10−5(µm)−1, na = 3, nb = 3, ra = 100 µm, rb = 180 µm, γa = γb = 0.1, ka = 0.09, kb = 0.099).

using this result, we can fine-tune the additional band
precisely. Also, similar this condition, it is for ring B. It
is operate inversely and shift the additional band to the
high frequencies, which is shown in Figure 6c. Figure 6b
shows the effect of the index of refraction for ring A and
changing n from 2 to 3 for J = 3. In this case, the similar
behavior is performed with wideband additional band. In
Figure 6d, we show the effect of the index of refractions
variation for J = 4 and n = 2. The index of refraction
variation is a parameter in which its variation can only
move the position of additional band. So, it is excellent
factor for displacement and tuning.

In Figures 6e, f, the effect of coupling coefficient on
transmission function are demonstrated. With increasing
the ring-A coupling coefficient, we haven’t any variation
on the additional band, but the amplitude in pass band
is distorted. But, for ring-B, with increasing the coupling
factor, the additional band is disappeared. So, the ring B
coupling factor can be used for managing additional band.
For example for J = 4, n = 2 and kb = 0.99, really the
additional band is rejected and only common behavior is
shown. Also, increasing the coupling factor will increase
the trapped light in ring and finally the transmitted signal
is decreased.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. (a) Transmission coefficients for multi-band operation (for J = 3, n = 2 and na = 3, 2.9, 2.8) vs. phase (0 − 2π for
1.55 µm) (λ = 1.55 µm, L = 20 µm, n0 = 1.5, αa = αb = α0 = 5 × 10−5(µm)−1, nb = 3, ra = 100 µm, rb = 180 µm, γa =
γb = 0.1, ka = 0.09, kb = 0.099). (b) Transmission coefficients for multi-band operation (for J = 3, n = 3 and na = 3, 2.9, 2.8)
vs. phase (0 − 2π for 1.55 µm) (λ = 1.55 µm, L = 20 µm, n0 = 1.5, αa = αb = α0 = 5 × 10−5(µm)−1, nb = 3, ra = 100 µm,
rb = 180 µm, γa = γb = 0.1, ka = 0.09, kb = 0.099). (c) Transmission coefficients for multi-band operation (for J = 3, n = 2
and nb = 3, 2.9, 2.8) vs. phase (0− 2π for 1.55 µm) (λ = 1.55 µm, L = 20 µm, n0 = 1.5, αa = αb = α0 = 5× 10−5(µm)−1, na =
3, ra = 100 µm, rb = 180 µm,γa = γb = 0.1, ka = 0.09, kb = 0.099).) (d) Transmission coefficients for multi-band operation (for
J = 4, n = 2 and na = 3, 2.9, 2.8 and nb = 3, 2.9, 2.8) vs. phase (0 − 2π for 1.55 µm) (λ = 1.55 µm, L = 20 µm, n0 = 1.5, αa =
αb = α0 = 5 × 10−5(µm)−1, ra = 100 µm, rb = 180 µm, γa = γb = 0.1, ka = 0.09, kb = 0.099). (e) Transmission coefficients
for multi-band operation (for J = 3, n = 2 and ka = 0.09, 0.25, 0.5, 0.75, 0.95) vs. phase (0 − 2π for 1.55 µm) (λ = 1.55 µm,
L = 20 µm, n0 = 1.5, αa = αb = α0 = 5×10−5(µm)−1, na = 3, nb = 3, ra = 100 µm, rb = 180 µm,γa = γb = 0.1, kb = 0.099). (f)
Transmission coefficients for multi-band operation (for J = 4, n = 2 and kb = 0.099, 0.25, 0.5, 0.75, 0.95, 0.99) vs. phase (0 − 2π
for 1.55 µm) (λ = 1.55 µm, L = 20 µm, n0 = 1.5, αa = αb = α0 = 5 × 10−5(µm)−1, na = 3, nb = 3, ra = 100 µm, rb = 180 µm,
γa = γb = 0.1, ka = 0.09).
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4 Conclusion

Since, the ring resonators can be integrated on semicon-
ductor wafers, any system design with ring resonators can
be integrated and this is very excellent advantage. Op-
tical multi-band filters are important for modern signal
processing. So in this paper, we have shown that using
Fibonacci-class ring resonators the multi-band optical fil-
ters can be obtained. Our design has monolithic capa-
bility on semiconductors. Also, with simulated parame-
ters, which is given in figures, our designed filters have
central wavelength at 1.55 µm and bandwidth less than
0.001 of central wavelength. Of course, bandwidth can be
optimized and lower bandwidths can be obtained. The ef-
fects of Fibonacc-class (J) and generalization factors (n)
on transmission coefficient are discussed. Also, the system
parameters effects on optical filtering operation studied.
We have shown that with coupling factors and ring res-
onator diameters, we can control the system bandwidth,
the position and the number of additional bands.
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